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Recognition of Military-Specific Physical Activities
With Body-Fixed Sensors

Thomas Wyss, MSc; Urs Mäder, PhD

ABSTRACT The purpose of this study was to develop and validate an algorithm for recognizing military-specific,
physically demanding activities using body-fixed sensors. To develop the algorithm, the first group of study participants
(n= 15) wore body-fixed sensors capable of measuring acceleration, step frequency, and heart rate while completing six
military-specific activities; walking, marching with backpack, lifting and lowering loads, lifting and carrying loads, dig-
ging, and running. The accuracy of the algorithm was tested in these i,solated activities in a laboratory setting (n = 18)
and in the context of daily military training routine (n = 24), The overall recognition rates during isolated activities and
during daily military routine activities were 87,5% and 85,5%, respectively. We conclude that the algorithtn adequately
recognized six military-specific physical activities based on sensor data alone both in a laboratory setting and in the mili-
tary training environment. By recognizing type of physical activities this objective method provides additional informa-
tion on military-job descriptions.

INTRODUCTION
A mismatch between physical capability and physical job
requirements can increase the risk of injury, jeopardize unit
performance, and decrease overall morale.'^ Therefore, the
importance of obtaining an accurate description of the job
requirements in physically demanding occupations cannot
be overestimated,''' particularly in military organizations.
Commonly used procedures to assess military- or fire fighting-
specific job requirements include self-report questionnaires,
interviews, observations, and physical measurements,'''^ Bos
et al,̂  recommend describing the exposure to work demands
objectively in terms of duration, frequency, and intensity.
To assess the duration and frequency of physical activities,
direct observation or video observation are most precise but
are impractical for large groups of participants. Using self-
report questionnaires is the most practical approach in large-
scale studies, but their reliability, validity, and objectivity are
low.«-"

The most promising method of assessing the duration, fre-
quency, and intensity of physical activities in large groups
of participants is the use of body-fixed sensors. Several
approaches have been shown to be effective in recognizing
specific activities based on data of diverse body-fixed sen-
sors.'""'- However, none of these approaches has been adapted
for a specific application in a military setting.

The most widely used body-wearable sensors measure
acceleration (ACC) or heart rate (HR), Of the many differ-
ent types of sensors, accelerometers supply the most useful
data for activity recognition," However, if worn only at the
hip, additional physical efforts resulting from activities with
low body movement but high muscle tension are not detected.
The use of only a heart rate monitor is less useful for activ-
ity recognition because HR has a delayed reaction to activ-
ity changes and lacks specificity for any particular activity.
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A combination of ACC and HR data may enhance precision in
activity recognition. The advantage of ACC is its immediate
response to body movements and its information on respective
intensity. On the other hand, even if HR has a delayed reac-
tion to activity changes, it is more accurate when describing
activities with low body movement but high physical intensity
than is ACC data.

However, body-fixed sensors must meet several demands
to be applicable in military workday life. They need enough
memory and battery lifetime to record data continuously over
at least 1 week. Sensors have to be waterproof, shock resis-
tant, and wearable with all military equipment. In the present
study, data provided by the sensors were used to recognize
the most relevant physically demanding activity classes in the
context of armed forces. Authors in previous studies'-'-"'"
defined activities as physically relevant in military service if
they are a frequent part of physically demanding tasks during
daily military routine. Walking, marching with backpack, lift-
ing and lowering loads, lifting and carrying loads, digging,
and running were named most often in those publications and
are therefore investigated in the present study.

The aim of this study was to recognize physically relevant,
military-specific activities using easy-to-handle body-fixed
sensors, thereby demonstrating that it is possible to objectively
assess the duration and frequency of physically demanding,
military-specific activities using this technology.

METHODS

Study Design

There were three steps in the data acquisition (see Figure I ),
First, 15 volunteers performed six single, military-specific
activities according to protocol. Their data were used to
develop algorithms for activity recognition. Second, 18 vol-
unteers performed the same six isolated activities to estimate
the accuracy of the activity recognition system. In the third
step, sensor-based activity recognition was compared to
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observation-based activity assessment on 24 volunteers dur-
ing daily military routine.

Participants and Anthropométrie Parameters
All participants were male recruits from the Swiss Army
(Table 1). All were volunteers recruited from two selected mil-
itary occupational specialties (rescue technician and infantry
recruits). The volunteers received comprehensive informa-
tion about the study and provided written informed consent
for their participation as approved by the Cantonal Ethics
Committee of Bern, Switzerland and from the Swiss Army
Sports and Preventions Competence Center. Age, body weight,
and height data were collected in the first 2 weeks of military
service. All volunteers were measured by the same examiner
using a calibrated digital balance and a measuring tape.

Instruments
ActiGraph uniaxial accelerometers (GTIM, ActiGraph LLC,
Fort Walton Beach, Florida) were used to monitor volunteers'
waist ACC in vertical direction and step frequency. A second
GTIM was mounted on the backpack to register backpack car-
rying. The intermonitor variability between different GTlM's
is very small (<1%).'' The GTIM is lightweight (27 g), com-
pact (3.8 cm X 3.7 cm X 1.8 cm), and splashproof. Its recharge-
able battery is capable of providing power for over 14 days

Development of the activity recognition algorithm
by investigating

isolated activities according to protocol (n = t5)

walking, marching witb backpack, lifting loads, carrying loads,
digging and running (seven minutes, eacb activity)

Testing of the activity recognition system
by investigating

isolated activities according to protocol (n = 18)

walking, marcbing with backpack, lifting loads, carrying loads,
digging and running (seven minutes, eacb activity)

Testing of the activity recognition system
by comparing to

direct observation in daiiy military routine (n = 24)

random cbosen 90 minutes of daily military service in various
training sections

FIGURE 1. Three steps to data acquisition in the present study.

without recharging, and it has a memory capacity of 1 tnega-
byte. More detailed specifications have been described else-
where."* In the present study, accelerometers were wrapped
in waterproof plastic and were placed in a belt pouch on the
waist over the right anterior axillary line and on the side strap
of the personal backpack. The GTlMs were programmed to
record acceleration and step-count data in 2-second intervals
so that data could be gathered over 6 continuous days.

A Suunto monitor (Suunto Smartbelt, Suunto, Fantaa,
Finland) was used to measure volunteers' HR. A Suunto
Smartbeh is a lightweight (61 g) and waterproof stand-alone
monitor worn on the chest. Its exchangeable battery is capa-
ble of providing power for over 4 weeks of continuous mea-
surement. One million heartbeats can be stored in the internal
memory, enough for more than 1 week of continuous mea-
surement. A Suunto Smatibelt registers HR as long as the
chest strap is worn. In the present study, data were transferred
to a computer, after a 5-day monitoring period, at 2-second
intervals using Suunto Training Manager version 2.2.0.

Data Collection Protocol
In a laboratory setting, 33 volunteers (Table I) cotnpleted six
activitie.s—walking, marching with backpack (10-15 kg),
lifting and lowering loads (30 kg), lifting and carrying loads
(30 kg, 10-40 m), digging, and running—for 7 minutes each
with 2 minutes rest between activities. Apart ftom runnitig,
which was the last activity for all volunteers, the order of the
activities was random. Data from 15 randomly chosen volun-
teers were used to develop algorithms for activity recognition.
Data from the remaining 18 volunteers were used to estimate
the accuracy of the activity recognition system.

During daily military routine, 24 randomly chosen vol-
unteers (Table I) from two different troops were individually
observed in situ over a 90-minute period to estimate the accu-
racy of the algorithm for activity recognition during daily mil-
itary routine. An examiner observed the volunteers in various
training sections and classified their activities in 20-second
intervals. Observation was always done by the satne exam-
iner. In addition, two scientists joined the observation of 14
volunteers to investigate the inter-rater reliability of direct
observation.

Analysis
Statistical comparisons of volunteer's anthropométrie data
between study groups of three parts of data acquisition were

TABLE I. Volunteers' Respective Age, Weight, Height, and Military Training School in Tbree Parts of Data Acquisition of the Present Study

Data Acquisition

Development of the Activity Recognition Algorithm
Testing of Activity Recognition System in

Isolated Activities
Te.sting of Activity Recognition System

During Daily Military Routine

n

15
18

24

Military Training School

Swiss Army Rescue Technicians'
Swiss Army Rescue Technicians'

Swiss Army Rescue Technicians'
Infantry School

School
School

and

Age (y)

20.7 ±1.1
2l.0±0.8

21.3 ±2.7

Weight (kg)

75.6 ± 10.3
75.4 ±8.6

77.3 ± 9.5

Height (cm)

179.3 ±6.5
176.8 ±8.0

180.9 ±5.2
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performed with SPSS for Windows (version 16.0, SPSS,
Chicago, Illinois) with an a level of 0.05 to indicate statis-
tical significance. Therefore a one-way analysis of variance
(ANOVA) with Tukey post hoc analysis was conducted.

All ACC and HR data were synchronized for every volun-
teer by a self-programmed application using Matlab (Matlab
5.3, MathWorks, Natick, Massachusetts). Mean heart rate
was calculated using a sliding window with a window size of
2 minutes on 5 days of continuous heart rate data for every
2 seconds. The lowest value found in such a window was used
as resting heart rate. Implausible data, caused by short dura-
tion artifacts in the signal, were detected by visual inspection
of the plotted raw data. These data were excluded from the
identification process of resting heart rate.

Deveiopment of the Activity Recognition Algorithm
The development of an activity recognition algorithm was
focused on the most frequent military-specific, physically
demanding activities such as ( 1 ) walking. (2) marching with
backpack, (3) lifting and lowering loads, (4) lifting and car-
rying loads, (5) digging, and (6) running.'-^-'-*'" Apart from
these, daily military routine contains many other activities.
The purpose of the present study is to recognize the six spe-
cific activities only and to assign all remaining activities to
the "other activities" class. Box plots for hip acceleration
(H-ACC), heart rate above resting heart rate (HRaR), step fre-
quency (SF), and backpack acceleration (BP-ACC) were plot-
ted for every activity class (Fig. 2). The box plots were used to
verify the discrimination of the activity classes by their inher-
ent sensor data. The specific activity classes were determined
as data within the 1.5 x interquartile range of corresponding

labeled data. Areas out of specific data ranges of the six activ-
ity classes represent the "other activities" class. Based on the
activity classes-specific data ranges, the nodes of the deci-
sion tree were defined. Classifications were made in 2-second
intervals. In a postprocessing step, first activity assignments
(0.5 Hz) were filtered to reduce the number of short-duration
misclassifications.'" The used filter replaces short activities
with the surrounding longer duration activity. Therefore, first-
classified data were buffered in 60-second time segments. If at
least 20 of the 30 decisions in a 60-second time segment were
the same, the respective activity class was assigned.

Testing of the Activity Recognition System

The recognition rates of activities classified based on sensor
data were calculated and presented in a confusion matrix.'''
Each row of the confusion matrix represents the instances
in an actual activity class, while each column represents the
instances in a predicted activity class. The recognition rate
is defined by the number of true positive-classified instances
divided by the number of total instances of the respective
actual activity class. The overall recognition rate is defined
by the sum of all true positive-classified instances of all
activity classes divided by the total number of investigated
instances.

RESULTS

Participants
Age, weight, and height of the volunteers in three parts of data
acquisition of this study did not differ {p = 0.702, 0.776, and
0.142, respectively, see Table I).

acceleration (ACC) heart rate above resting heart rate (HRaR)

0 100 200

step frequency (SF)
300 400 500 d2% Ó 50 100

backpack acceleration (BP-ACC)

300 c/2s

FIGURE 2 . (A-D) Box plots are used to determine nodes of the decision tree by visual inspection. Decision nodes are outlined with two correspond-
ing circles. Activities marked with R fall into right branch and those marked with L fall into left branch of node. C I , walking; C2, marching with backpack;
C3. lifting and lowering loads; C4. lifting and carrying loads; C5. digging; and C6. running.
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Discrimination of Military-Specific Activity Classes
by Sensor Data
First, running can be separated from the other five mili-
tary-specific activities using H-ACC data (see Figure 2A).
Furthermore, walking and marching can be separated from two
materials-handling classes (lifting and lowering loads, digging)
using SF (see Figure 2B). Finally, walking and marching with
backpack can be distinguished by BP-ACC (see Figure 2D).
The discrimination power of the registered data does not
allow the separation of the three materials-handling classes.
Discrimination of the six military-specific activity classes by
HRaR was weak (see Figure 2C). However, HRaR is relevant
to distinguish between the six specific and other less physi-
cally demanding activities ofthe "other activity" class.

Decision Tree
Activities were first classified in 2-second time segments with-
out considering temporal connections (see Figure 3A). The
problem ofthe three materials-handling classes not being able
to be separated still remained; therefore, simple temporal logic
was used in a second step. First-classified data were buffered in
60-second time segments. If at least 20 ofthe 30 decisions in a
60-second time segment were the same, the respective activity
class was assigned (see Figure 3B). If the assigned class was
the cumulative class of materials handling, it was further sep-
arated into lifting and lowering loads (H-ACC < 42 c/2 s) or

digging (H-ACC > 42 c/2 s), depending on the mean H-ACC.
For the class lifting and carrying loads, the 30 decisions in
60-second time segments were analyzed further. In this .seg-
ment, short classifications as cumulative materials handling
and walking alternated cyclically. On average, 44% of the 30
two-second decisions in the 60-second time segment of lifting
and carrying loads was assigned as materials-handling activ-
ity, 33% as walking, and 23% as other activities. Based on that
distribution, the last decision was made. If in a 60-second time
segment at least 11 first decisions were materials handling and
8 were walking or marching, the lifting and carrying loads
class was assigned. Otherwise, the segment was assigned to
the heterogeneous "other activities" class (Fig. 3).

Testing of the Activity Recognition System in
Isolated Activities
The overall recognition rate of isolated activities assessed in a
laboratory setting was 87.5% (walking, 95%; marching with
backpack, 95%; running, 85%; and materials-handling classes,
76%). Within the materials-handling classes, 60% of lifting and
lowering loads was classified true positive and 22% was incor-
rectly classified as digging. Also, 60% of digging was classi-
fied true positive and 15% was incorrectly classified as lifting
and lowering loads. Only 42% of the lifting and carrying loads
class was classified true positive, while 33% was incorrectly
classified as walking and 6% as lifting and lowering loads.

¿\ I 2-second decisions f > I 60-second decisions

heartrate above resimg (HRaR),
acceleration on the hip (H-ACC),

acceleration on the backpack (BP-ACC)
and step treqency (SF)

sampled at 0.5 Mz

buffering 30 decissions (60s) evaluate histogram over buffet

FIGURE 3. (A and B) Decision tree in two phases as an activity classifier. In phase A, sensor data sampled at 0.5 Hz is used to distinguish between walking
(CD. marching with backpack (C2), materials-handling activities (C3-C5), running (C6), and other activities (CO). In phase B, results of part A are buffered
in 60-second sequences to filter short duration misclassifications and to distinguish between all six relevant, military-specific physically demanding activity
classes and the "other activities" class.
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Comparison of the Activity Recognition System
With Observation During Daily Military Routine
The overall recognition rate of activities classified by the sen-
sor-based activity recognition system compared to observa-
tion-based activity classification during daily military routine
was 85.5%. True positive recognition for the military-specific
activity classes ranged from 48% (materials-handling classes)
to 89% (marching with backpack; see confusion matrix in
Table II).

Inter-rater Reliability of Direct Observation
Total data from three examiners matched 91.8% to 92.6% of
the pairwise-compared instances. The concordance of activ-
ity classification based on observation for the six activities
ranged from 51% between examiners one and two in lifting
and carrying loads to 100% between examiners two and three
in running (see Table III).

DISCUSSION
Direct observation,^" energy expenditure estimations by dou-
bly labeled water (DLW),*' ^̂  and self-report questionnaires^'-^"
are the most common methods of assessing job requirements
in armed forces. Unfortunately, direct observations are not
feasible for large-scale studies; DLW does not differ between
activity classes, and self-report questionnaires are of low
objectivity. Established body-fixed sensors were used in the
present study to objectively assess duration and frequency
of military-specific physically demanding activities in larger
groups. Algorithms have thus been developed to recognize six
military-specific activities.

The overall recognition rate of the presented activity rec-
ognition system of 87.5% for isolated activities and 85.5% for
activities observed during daily military routine is high and
comparable with findings in other studies.'""'- However, there
are important differences concerning the methods between the
studies in terms of choice and number of assessed activities,
in numbers of sensors used and their data density, and in vali-
dation methods. Pober et al.'^ achieved a mean recognition

rate of 80.8% by classifying four activities (walking, walking
uphill, vacuuming, and computer work) with one sensor sig-
nal (chest acceleration, 1 Hz) in a laboratory setting. Pärkka
et al.'" found a mean recognition rate of 86% by classifying
five activities and three posters (running, nordic walking,
walking, rowing, cycling, sitting, standing, and lying) with 22
different signals (synchronized by 1 Hz) in an out-of-labora-
tory environment. Aminian et al." showed a mean recognition
rate of 89.3% by classifying three posters and two activities
(sitting, standing, lying, dynamic activities, and other activi-
ties) with two sensor signals (chest and thigh acceleration, 10
Hz) in a laboratory setting.

The recognition rate of specific activities investigated dur-
ing daily military routine was lower than in isolated activities
performed after protocol. This is due to a greater variability
in activity durations and intensities during daily military rou-
tine. Especially, activities with short durations have a lower
recognition rate because with every change of activity, a dif-
ference between sensor-based and observation-based activ-
ity classification is likely. If the activity changes often, direct
observation is more difficult and subjective appraisal is more
important, such as in frequent changes between walking and
standing, for example. Misclassifications of activities with
short duration explain why walking achieves a lower recog-
nition rate than marching with backpack as an example of an

TABLE III. Accordance of Observation-Based Activity
Cla.ssification by Three Different Examiners Following,

Simultaneously, the Same Volunteer

Activity Class

Walking (%)
Marching With Backpack (%)
Lifting and Lowering Loads (%)
Lifting and Carrying Loads (%)
Digging (%)
Running (%)
Other Activities (%)

Examiner
1 vs. 2

81
99
83
51
63
92
96

Examiner
1 vs. 3

81
99
57
72

100
85
97

Examiner
2 vs. 3

87
98
79
54
83

100
94

Twelve volunteers were observed for 90 minutes each.

TABLE II. Confusion Matrix With Actual (Observation Based) v.s. Predicted (Sensor Data Based) Activity Classes
Assessed During Daily Military Routine

Observation Based Activity
Classes, minutes (%)

Walking
Marching With Backpack
Lifting and Lowering Loads
Lifting and Carrying Loads
Digging
Running
Other Activities
Sum

Walking

92 (66)
0(0)
0(0)
7(10)
0(0)
1(4)

15(1)
115

Marching
With Backpack

0(0)
197 (89)

0(0)
2(3)
0(0)
1(4)
2(0)

202

Sensor-Based Activity Classes, minutes (%)

Lifting and
Low Loads

2(1)
1(0)

46 (48)
9(13)
4(18)
0(0)

79(5)
141

Lifting and
Carry Loads

8(6)
8(4)

1(1)
14 (20)

1(5)
1(4)

24(2)
57

Digging

0(0)
1(0)
3(3)
1(1)

11 (50)
0(0)
3(0)

19

Running

1(1)
0(0)
0(0)
0(0)
0(0)

16 (70)
0(0)

17

Other
Activities

37 (26)
15(7)
45 (47)
37 (53)
6(27)
4(17)

1510(92)
1,654

Sum

140(100)
222(100)
95(100)
70(100)
22(100)
23(100)

16.33(100)
2,205

In 24 volunteers a total of 2,205 minutes of daily military activities was measured. True positive classifications are printed boldface.
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activity with longer durations. All materials-handling classes
show only moderate recognition rates (see Table II), However,
with over 90 minutes of data collection per subject, on group
level, faKsc negative and false positive misclassifications can-
cel each other at random. Table II shows that the total sum of
instances classified on the basis of sensor data are similar to
the total sum of observed instances for all activity classes.

Only the true positive classification of the lifting and car-
rying loads class was apparently low. However, parts of lifting
and carrying loads activities were classified as either walk-
ing and marching (33% in laboratory setting and 13% during
daily routine) or lifting and lowering loads (6% in laboratory
setting and 13% during daily military routine, see Table II),
These classifications are not entirely wrong because the class
carrying loads contains walking and, to a small extent, lift-
ing. Apart from that, there are no systematic misclassifications
between the six military-specific activity classes.

Possibilities for Enhancing Output in Activity
Recognition
The lifting and carrying loads class is important in the military
setting because walking with heavy loads is much more phys-
ically demanding than simply walking. It is worthwhile to
attempt to enhance the respective recognition rate of the used
method. We suggest investigating temporal patterns in tbe
data using hidden Markov models." for example. Temporal
patterns are suggested to be useful in recognizing lifting and
carrying loads because this activity class is composed by
cyclic alternations of a small number of short activities. To
test such an approach, a new dataset with higher resolution
and precision of the label segments is needed. With the use of
more complex sensors, higher data density and additional sen-
sors placed elsewhere on the body, the accuracy of the activity
recognition system may be increased. Unfortunately, continu-
ously assessing physical activities over I week of military ser-
vice puts very high restrictions on sensors and body positions.
Therefore, it is important to maintain a balance between accu-
tacy and feasibility, especially in this setting.

Limitations
Although direct observation was found to have good inter-
observer reliability in general, it is unlikely that it is entirely
precise. The comparison of observations of three examiners
showed enhanced variances in short duration activities. The
concordance for the lifting and lowering loads class between
different examiners was only 51-72%, for example (see
Table III), The use of video observation would have been
ideal, as it may provide a more accurate reference for sensor-
based activity recognition. Video analysis allows for watching
a specific sequence several times, using slow motion and other
software functions that facilitate tbe task, allowing for defini-
tion of label segments with a higher resolution and precision.
However, the use of video was not allowed in the Army's daily
routine and video analysis can be expensive.

MILITARY MEDICINE, Vol, 175, November 2010

In the presented study, volunteers were observed during
randomly chosen 90 minutes of their daily military routine.
The disadvantage of this approach is its unequal outcome in
duration and frequency of different military-specific activi-
ties. Unfortunately, the dataset sampled during daily military
routine contained only 22 minutes of digging and 23 minutes
of running. Each of these activities represents 1 % of the regis-
tered activity time (see Table II), However, to counter this lim-
itation, the military-specific activity recognition system was
additionally compared to isolated activities performed after
protocol containing the same duration for every activity class
in every subject.

Strengths
The developed algorithms for military-specific activity recog-
nition are validated not only in isolated activities in a labora-
tory setting but also during daily military routine. Therefore,
the results are more meaningful for future applied studies.

The presented classification method is simple to use and
comprehensible.

Additionally, the algorithm of this study can be combined
with algorithms from prior studies to estimate activity inten-
sities,-*'--' Those algorithms for energy expenditure estimation
are based on the same sensor signals (uniaxial accelerometry
and HR monitors). However, such algorithms have to first be
validated in a military setting.

Relevance for Future Applications ;
Body-fixed sensors have been applied successfully in recent
studies to investigate job requirements in military occupa-
tions,''--'*-'" With the algorithm presented in the current study
body-fixed sensors deliver not only previously used indexes of
activity intensities (ACC and HR)-' -" and walking distances
(SF),-** but also information on type, duration, and frequency
of military-specific activities.

The advantages of the chosen body-fixed sensors for future
investigations in military live action are the ability to collect
and store data of many participants, without any technical
support or recharging over 1 week. In contrast to prior obser-
vation studies,-'"" there is no need for a researcher to accom-
pany the participants during military field exercises with the
current approach, A limitation of this approach when applied
in the field may be the reduced control of participants' com-
mitment to wearing the sensors.

The presented algorithm was developed to provide scientific
answers in the field of occupational medicine, injury preven-
tion, and physical training in military settings. Additionally,
physical activities and demands can be determined to develop
job descriptions in military organizations. So far, a relation
between general physical demands and injury incidence has
been demonstrated,"" The present method can provide use-
ful information to further specify physical demands-related
injury risk factors. Therefore, progression, type, amount, and
frequency of physical demands during military basic training
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can be assessed and compared with occurrences of injuries,
dismissals, or changes in physical performances.

CONCLUSION
Established, easy-to-handle body-fixed sensors deliver data
for specific and valid activity recognition in a military setting.
With the discussed sensors and the developed algorithm, mili-
tary-specific activities can be recognized in 1-minute intervals
over six continuous days. The presented method allows inves-
tigators to objectively assess type, occurrence, duration, and
frequency of military-specific physical activities.
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